PISA GOLD A Wealth of Potential Evidence Advocating Policy for Gifted & Talented Education

2019 - WCGTC - 23rd Biennial World Conference July 24-28, 2019 - Nashville, Tennessee, USA

Kathleen Stone, Ph.D INSTEAD International, LLC www.insteadinternational.com kstonegift@aol.com

PSA Program for International Student Assessment

WEBSITE:

www.oecd.org/publications/pisa-2015-results-volume-i

2009 READING 2018 2000 2012 MATH 20032006 **2015 SCIENCE**

2015 PISA TEST SAMPLE

72 Countries/Economies

35 OECD Countries 37 Partner & Economies

OECD - Organization for Economic Cooperation & Development

Functional Skills ✓ AGE 15 End of Mandatory Schooling ✓ 2015 – COMPUTER BASED APPLICATION of PROBLEM-SOLVING ✓ RECENT ADDITION: **FINANCIAL LITERACY**

✓ Scores: COMBINED & SUB-SCALES ✓ 90th / 95th PERCENTILE Scores ✓ PROFICIENCY LEVELS 1 – 6 ✓ GENDER Differences

✓ PISA "Effect" **Indirect but Influential TOOL** of Education POLICY

14 KARAT GOLD NUGGETS

1	TOP PERFORMERS in SCIENCE, MATH, READING	8	EARLY CHILDHOOD (ECE)
2	EXCELLENCE GAP Between TOP PERFORMERS and LOW ACHIEVERS	9	OPPORTUNITY TO LEARN (OTL)
3	GENDER Differences	10	GROUPING
4	CONTENT Sub-Scales	11	IMMIGRANT STUDENTS
5	COGNITIVE Sub-Scales	12	FINANCIAL LITERACY
6	International PROFICIENCY LEVELS as BENCHMARKS	13	PROBLEM-SOLVING
7	SOCIOECONOMIC Factors	14	CHANGE OVER TIME

What Sample Would You Select? HOME COUNTRY:

COUNTRY	RATIONALE	COUNTRY	RATIONALE
1.		8.	
2.		9.	
3.		10.	
4.		11.	
5.		12.	
6.		13.	
7.		14.	

SAMPLE COMPARISON METHOD

MEAN SCORES	TOTAL SCIENCE	TOTAL MATH	TOTAL READING
IRELAND, Rep.	503	504	521
UNITED KINGDOM	509	492	498
England	517	493	500
Northern Ireland	500	493	497
Scotland	497	491	493
Wales	485	478	477

1. EXCEL SPREADSHEET – ENTER DATA

- **2. HIGHLIGHT EXCEL DATA CHART**
- **3. SELECT INSERT CHART LINE GRAPH**
- **4. GRAPH APPEARS Can move, Copy, Paste**
- **5. USE LAYOUT Choices, DESIGN Choices**
- 6. ADD TITLES, HEADING, COLOR

PISA "GOLD"

PISA 2015

- Research Gold Mine
- International Data
- Waiting to Mine in Depth
- Valuable Potential
- Mining Process
- Digging Through
- Huge Amount of Sediment Shake and Sift
- Nuggets of gold
- Valuable Research Data

- Metaphor
- Data Mining process
- 14 Karat Focus
- Evidence
 From PISA
- Gold Mine.

- PISA
- Advocacy
- Policy initiatives
- Advanced Achievement
- Gifted & Talented Education.

PISA 2015 GOLD

Evidence - Advocate for Gifted Education policy.

 U.N. Sustainable Development Goal 4 -Nations achieve equitable quality education.
 PISA total League Table Rankings

less valuable than secondary analyses.

PISA sub-scores identify "Top Performers" highest Proficiency Levels 5/6 in Science, Math & Reading.

PISA's sub-group analyses in Gender differences also support goals to reduce barriers to achievement for GIRLS as "Top Performers" especially in STEM.

SAMPLING DECISIONS

Plan a comparison of countries.
 Relate to interests of your country.
 Which countries would you compare? (Maximum 15)

- G6 Japan, U.S., Canada, U.K., France, Germany, Italy
- PIIGS Portugal, Ireland, Italy, Greece, Spain
- Geographical Area Continent Region
- Neighbors
- Top Performers
- High Mid Low
- Personal Interest (e.g. U.S.A. for Gifted)
- > OTHER

The EUROPE Book c. 2010 (Lonely Planet)

BRITISH ISLES	WESTERN MEDI- TERRANEAN	CENTRAL EUROPE	SCANDINAVIA & BALTIC	E. MEDITERRAN EAN, BALKANS	
UNITED KINGDOM (G7)	FRANCE (G7)	GERMANY (G7)	DENMARK	BOSNIA & HERCEGOVINA	
ENGLAND	ITALY (G7)	SWITZERLAND	FINLAND	CROATIA	
IRELAND	SPAIN	LIECHTENSTEIN	NORWAY	BULGARIA	
SCOTLAND	MALTA	AUSTRIA	SWEDEN	MONTENEGRO	
WALES	PORTUGAL	HUNGARY	ICELAND	ALBANIA	
IRELAND, REP	MONACO N/A	CZECH REP.	GREENLAND N/A	MACEDONIA	
LOW COUNTRIES	VATICAN CITY N/A	SLOVAKIA	ESTONIA	GREECE	
NETHERLANDS	SAN MARINO N/A	POLAND	LATVIA	TURKEY	
BELGIUM	ANDORRA N/A	SLOVENIA	LITHUANIA	CYPRUS	
LUXEMBOURG				SERBIA N/A	
BLACK SEA	ROMANIA	RUSSIA	UKRAINE N/A	ARMENIA N/A	
& CAUCASUS	MOLDOVA	GEORGIA	BELARUS N/A	AZERBAIJAN N/A	

REGIONAL Sub-Groups 9 Countries

BELGIUM (3)	U. K. (4)	SPAIN (17)	Castile La Mancha
Flemish	England	Andalusia	Catalonia
French	N. Ireland	Aragon	Comunidad Valenciana
German	Scotland	Asturias	Extramadura
ITALY (4)	Wales	Balearic Islands	Galicia
Bolzano	CANADA (10)	Basque Country	La Rioja
Compania	U.S. (3)	Canary Islands	Madrid
Lombardia	Mass.	Cantabria	Murcia
Trento	N. Carolina	Castile & Leon	Navarre
U.A.R. (7)	Puerto Rico	PORTUGAL (1)	COLOMBIA (4)

PISA 2015

Major FOCUS SCIENCE Minor Areas

- READING
- MATH
- Collaborative
 PROBLEM SOLVING
- FINANCIAL LITERACY (Optional)

540,000 Students Representing 29,000,000 15-Year-Olds COMPUTER-BASED 57/72 COMPUTER 15/72 PENCIL-PAPER

- 2 Hours Per Student
- 4 30 Minute Clusters
- 6 Clusters Each Science, Reading, Math
- Science Addl. 6 Clusters

RELEVANT SUB-GROUPS

- Boys and Girls
- Different Social & Economic Backgrounds
- Trends Since 2000

IMPORTANT SUB-GROUP ANALYSES

Mean/Rank Math/Science/Reading "TOP Performer" Proficiency Levels 5/6 □ 90th and 95th Percentiles Gender Differences Science sub-scales for **Content, Procedural Knowledge**, and Science Competencies **SES**/Demographic data.

PISA 2015 QUESTIONNAIRES

QUESTIONNAIRES

- Students (35 Min.)
- Principals (45 Min.)

STUDENT BACKGROUND

- Family Backgrounds
- Economic, Social Capital

STUDENTS' LIVES

- Attitude Towards Learning
- Habit/Life in/out of School
- Family Environment

SCHOOLS

- Human/Material Resources
- Public/Private Mgmt., Funding
- Decision-Making
- Staffing
- Extracurricular Activities
- Context of Instruction
- Types, Class Size
- Classroom/School Climate
- Science Activities
- Aspects of Learning: Interest, Motivation, Engagement

OPTIONAL QUESTIONNAIRES

- Computer Familiarity
- Educational Career
- Parent Perceptions
- Teacher Science Curriculum

LIMITATIONS in Causality

U. S. National Academy of Education Report (2018)

"International Education Assessments – Cautions, Conundrums, and Common Sense"

Design Issues Sampling Questionnaire **Development** Computer-based Assessment Analysis Interpretation and Reporting Policy Uses and Limitations

Research Cautions Using ILSA

(International Large-Scale Assessments) David Rutkowski, Leslie Rutkowski (Indiana University)

Tailored Background Scales

- SES Socio-Econ. Status
- Learning Resources
- Economic Wellbeing
- Threats to Validity: Age Language, Culture, Ability

South-North Perspectives Floor Effects – Low-Performing Cultural Clusters PISA For Development Girls – Collaborative Prob. Solving Shanghai – School Inequality Computer Gaps – School Locations **EA** International Association for Evaluation of Educ. Achievement

- TIMSS Math & Science
- PIRLS Reading
- ICCS Civics & Citizenship
- SITES, ICILS Computer. Tech.
- ECES Early Education
- TEDS-M Teacher Education

Influence Task Design: Target Knowledge Content Proficiency Level Benchmark

PISA 2015 - VOLUME 1 of 5 Volumes

CHAP TITLE WHAT IS PISA? **SCIENCE** PERFORMANCE AMONG 15-YEAR-OLDS 2 STUDENT'S ATTITUDES TOWARDS SCIENCE AND 3 **EXPECTATIONS OF SCIENCE-RELATED CAREERS READING PERFORMANCE AMONG 15-YEAR-OLDS** 4 **MATHEMATICS** PERFORMANCE AMONG 15-YEAR-OLDS 5 **ATTITUDES TOWARDS SCIENCE** 6 **IMMIGRANT BACKGROUND, STUDENT PERFORMANCE** 7 AND STUDENTS' ATTITUDES TOWARDS SCIENCE 8 WHAT PISA 2015 RESULTS IMPLY FOR **POLICY**

PISA WORLD	MATH Rank	RDG Rank	SCI Rank
Singapore	1	1	1
Japan	5	8	2
Estonia	9	6	3
Ch. Taipei	4	23	4
Finland	12	4	5
Macao Ch	3	10	6
Canada	10	2	7
Viet Nam	21	30	8
Hong Kong	2	2	9
B-S-J-G Ch	6	27	10
Korea Rep	7	7	11
N. Zealand	21	10	12
Slovenia	14	14	12
Australia	23	15	14
Germany	16	10	15

PISA LEAGUE TABLES

List Based on SCIENCE **RANK 1 - 15**

League Table Rank by **MEAN Less Relevance for Gifted & Talented**

%TOP PERFORMER	MATH Lv. 5-6	RDG Lv. 5-6	SCI Lv. 5-6	
Singapore	34.8	18.4	24.2	
Japan	20.3	10.8	15.3	
Estonia	14.7	11.0	13.5	
Ch. Taipei	28.1	6.9	15.4	
Finland	11.7	13.7	14.3	
Macao Ch	21.9	6.7	9.2	
Canada	15.1	14.0	12.4	
Viet Nam	9.3	2.7	8.3	
Hong Kong	26.5	11.6	7.4	
B-S-J-G Ch	25.5	10.9	13.6	
Korea Rep	20.9	12.7	10.6	
N. Zealand	11.4	13.6	12.8	
Slovenia	13.5	8.9	10.6	
Australia	11.3	11.0	11.2	
Germany	12.9	11.7	10.6	

1. PISA TOP PERFORMERS Rank 1-15 Science

PROFICIENCY LEVELS 5-6

% PERCENT More Relevant for Gifted & Talented 19 **1. TOP PERFORMERS** Science, Math, Reading **TOP** Performers
Proficiency Levels 5 and 6 – Percent
LOW Achievers - Below Level 2

PERCENTILE Scores (Highest 800) 90th and 95th Percentiles Mean (Published LEAGUE TABLE) 10th Percentile

WORLD'S HIGHEST-SCORING STUDENTS

"The World's Highest-Scoring Students – How Their National Led Them to Excellence"

By Hani Morgan Peter Lang Publishing, Inc. New York c. 2018 Global Studies in Education Volume 35

Finland Singapore Japan South Korea China Canada Estonia

From Excellence to Mediocrity: The Decline of the Education System in the United States

WORLD HIGH 10	TOT SCI RANK	PISA SCIENCE WORLD	WORLD TOP 15 - 90%	WORLD TOP 15 - 95%	EUROPE TOP 15 - 90%	EUROPE TOP 15 95%	EUROPE	TOT SCI Rank
World	1	Singapore	683	712	648	677	Estonia	3
World	2	Japan	655	683	651	681	Finland	5
World	3	Estonia	648	677	636	667	Slovenia	12
China	4	Ch Taipei	655	685	636	669	Germany	15 T
World	5	Finland	651	681	638	668	Netherland	15 T
China	6	Macao Ch	630	656	638	670	U.K.	15 T
World	7	Canada	644	674	632	662	Switzerland	18
	8	Viet Nam	624	655	618	648	Ireland	19
China	9	Hona Kona Ch	622	646	617	648	Denmark	20 T
World	10	B-S-J-G Ch	649	677	629	657	Belgium	20 T
World	11	Korea Rep.	636	665	619	650	Poland	22
	12	N. Zealand	647	682	622	655	Norway	24
	12	Slovenia	636	667	621	652	Austria	26 T
	14	Australia	639	672	623	652	France	26 T
	15	Germany	636	669	625	658	Sweden	28
PISA 2015 – SCIENCE – World / Europe								
		RANK 1-15	- 90 th a	and 95 ^t	^h PERC	ENTI	ES	

NOTE: 30 Score Points equates to about one year of Schooling.

22

PISA 2015 - SCIENCE - Rank 1-15 - World v/s Europe

PISA 2015 MEAN V/S 90TH PERCENTILE

2. EXCELLENCE GAPS

Between TOP Performers – LOW Achievers

"EXCELLENCE GAPS IN EDUCATION -

Expanding Opportunities For Talented Students"

By Jonathan A. Plucker Scott J. Peters

c. 2016 Harvard Education Press American Infatuation With Narrowing Achievement GAPS
 GAPS in student sub-groups exist before formal K-12 Education
 Socioeconomic Status GAPS
 ESCS Economic, Social, and Cultural Status - PISA
 State-Level Excellence GAPS

PISA GAPS

- Top Performers P/L 5-6
- Low Achievers P/L 1-2

2. ACHIEVEMENT GAPS – U.S. **Poor, Ethnic, Racial Minority Groups**

STATE-LEVEL GAPS FEDERAL EDUCATION POLICY

- ESEA Elementary & Secondary **Education Act**
- ✓ NCLB No Child Left Behind (2002)
- Race to the Top (2009) \checkmark
- ✓ CCSS Common Core State Standards (2012)
- ESSA Every Student Succeeds Act (2015)

Narrowing the Achievement Gap Editors: Thomas B. Timar Julie Maxwell-Jolly Harvard Education Press (c. 2012)

ECONOMIC ADVANTAGE

- Caucasian
- Asian American

LOW INCOME

- > Afro-American
- Latino
- **Native American** \succ

The Flat World and Education – How America's Commitment to Equity Will Determine Our Future **By: Linda Darling-Hammond** Teacher's College (C. 2010)

2. Addressing the EXCELLENCE GAP (Plucker 2016)

ALTERNATIVE IDENTIFICATION

- **1. Different Tests**
- 2. Nonverbal Testing
- 3. Structured Observation Protocols
- 4. Universal Screening
- 5. Local Norm Comparisons
- 6. Group-Specific Comparisons
- 7. Losing the Arbitrary Classifications (Observing Need Through Data)

RECENT INITIATIVES

- 1. Growth-Focused Accountability and Educator Evaluation
- 2. Out-Of-Level Testing
- 3. Javits Gifted & Talented Students Education Program
- 4. Response to Intervention (RTI)
- 5. Wider Interest in Advanced Education

Sample GLOBAL Selection - GAPS NAGC Publication

Parenting For High Potential NAGC Publication December 2018

Special Issues: Inside – A Global Look at Giftedness

M. Rene Islas Executive Director

- Australia
- New Zealand
- Brazil
- Netherlands
- Greece
- Peru
- Czech Republic
- Ireland
- Kenya (No PISA)
- India (No PISA)

NAGC Sample **Excellence** GAP

Excellence GAP – Top Performers

3. GENDER Less GIRLS Choose Careers Feb. 26, 2019 in Science and Engineering

- Women under-represented in most tech companies & Labs.
- More women complete tertiary education across high-income countries.
- 25% of ICT Graduates
- 24% Engineering Graduates

NEW RESEARCH:

- Girls' confidence in Science
- Relative Strength other Subjects.
- Interest in Science accounts for deficit in Women's STEM,
- High-Performing Girls avoid
 STEM . Non-science higher

- GIRLS outperformed Boys Science 19 of 67 countries
- BOYS outperformed Girls
 Science 22 of 67 countries
- Remaining 26 countries not statistically significant
- BOYS higher Science/Math
- GIRLS higher in Reading
- BOYS more likely to choose careers STEM.
- BOYS Self-efficacy in Science higher in 39/67
- BOYS stronger interest in
 Science 51/67 31

PISA 2015 - TOP PERFORMERS - GENDER

PISA 2015 MATH EUROPE High/Low Proficiency Levels – Gender Differences

PISA – GENDER: MATH – READING - SCIENCE HIGH: READING/Female LOW: READING/Male MATH/Female

PISA – GENDER: MATH – READING - SCIENCE HIGH: READING/Female LOW: READING/Male

SCIENCE CAREER CHOICES – NUMBER COUNTRIES N=72	BOYS	GIRLS
Medical Doctors	72	72
Engineers	66	34
Software & Applications Developers & Analysts	61	7
Architects and Designers	55	53
Dentists, Pharmacists, Physiotherapists, Dieticians, Other Health Professionals	35	71
Physical & Engineering Science Technicians	21	0
Electro-technology Engineers	17	0
Physical & Earth Science Professionals (e.g. Chemist)	12	8
Life Science Professionals (e.g. Biologist)	11	17
Veterinarians	5	45
Database and Network Professionals	4	0
Nurses and Midwives	1	45
Medical & Pharmaceutical Technicians	0	7
Paramedical Practitioners	0	1 36
STUDENTS EXPECTING TO WORK IN SCIENCE-RELATED OCCUPATIONS

GENDER Differ<u>ence</u>

4. CONTENT Sub-Scales

2015 SCIENCE

2012 MATH

- NUMBERS
- ALGEBRA
- GEOMETRY

CONTENT KNOWLEDGE CONTENT Subscales

- PHYSICAL SYSTEMS
- LIVING SYSTEMS
- EARTH & SPACE SYSTEMS

PROCEDURAL & EPISTEMIC KNOWLEDGE

2012 READING

CONTINUOUS
 TEXT

CONTINUOUS

NON-

TEXT

PISA 2012 CONTENTS

MATHEMATICS

READING

SCIENCE

Four Overarching Ideas That Relate to NUMBERS ALGEBRA GEOMETRY

 Quantity
 Space and Shape
 Change and Relationships
 Uncertainty and Data Form of Reading Materials Includes:

- or Prose Organized in Sentences and Paragraphs
- Narration
- Exposition
- Argumentation
- Description
- Instruction
- NON-CONTINUOUS TEXTS That Present Information in Other Ways
- Lists, Forms, Graphs
- Diagrams

Scientific
 KNOWLEDGE
 or CONCEPTS
 Related to:

- Physics
- **Chemistry**
- Biological Sciences
- Earth Sciences
- Space Sciences
- APPLIED to CONTENT of the Items and Not Just Recalled.

STRENGTHS AND WEAKNESSES IN DIFFERENT KINDS OF MATH - 2012

40

SCIENCE CONTENT AREA SUBSCALES

PHYSICAL Systems	LIVING Systems	EARTH AND SPACE SYSTEMS
Knowledge of the Structure and Properties of Matter	Knowledge of the Cell and Its Structures	Knowledge about the Structure of Systems
Chemical Properties	The Concept of An Organism	Changes in Earth Systems
Chemical Reactions	Human Biology	The Earth's History
Motion and Forces	Populations	The Solar System
Magnetic Fields	Ecosystems	History and Scale of the Universe
Energy and Its Transformation	Biosphere	
Interactions Between Energy and Matter		

PISA 2015 – EUROPE – SCIENCE

SCIENCE CONTENT & GENDER

BOYS

- More interest in
 PHYSICS & CHEMISTRY
- More interest in Science Topics of MOTON & FORCES
 - Velocity Friction Magnetic & Gravitational Forces
- More interest in Topics of ENERGY & its TRANSFORMATION
 - **Conservation Chemical Reactions**

GIRLS

- More interest in
 HEALTH-RELATED TOPICS
- In All Countries & Economies Girls more likely to be interested in HOW SCIENCE CAN HELP PREVENT DISEASE

5. COGNITIVE Sub-Scales

KNOWLEDGE

- CONTENT
- PROCEDURAL

PROCEDURAL

- EXPLAIN PHENOMENA
- EVALUATE DESIGN
- INTERPRET DATA
 EVIDENCE

PISA 2015 – EUROPE SCIENCE - Knowledge Sub-Scale

PISA 2015 – EUROPE SCIENCE – Competency Sub-Scales

ENGAGEMENT MOTIVATION SELF-EFFICACY

SCIENCE ENGAGEMENT	MOTIVATION FOR LEARNING SCIENCE	SCIENCE SELF-BELIEFS
Kind of Job Expected at 30 Years of Age	Enjoyment of Doing and Learning Science	SELF-EFFICACY
Science Activities: Participation in Range of Science- Related Activities	Interest in Broad Science Topics	PERCEIVED ABILITY TO USE THEIR KNOWLEDGE OF SCIENCE IN REAL-WORLD SITUATIONS
	Instrumental Motivation for Learning Science. Perceptions of How Useful School Science is for Their Study and Career Plans	

STUDENT <u>SELF-EFFICACY</u> IN SCIENCE – Report "They could easily do" Tasks.

- A. **RECOGNIZE Science Question that Underlies a Newspaper Report on Health Issue.**
- **B. EXPLAIN Why Earthquakes Occur more Frequently in Some Areas than in Others.**
- **C. DESCRIBE the Role of Antibiotics in Treatment of Disease.**
- **D. IDENTIFY Science Question Associated with Disposal of Garbage.**
- E. PREDICT How Changes to Environment Will Affect Survival of Certain Species.
- F. INTERPRET Scientific Information Provided on Labelling of Food Items.
- G. DISCUSS How New Evidence Can Lead to Change Understanding About Possibility of Life on Mars.
- H. IDENTIFY Better of Two Explanations for Formation of Acid Rain.

6. International PROFICIENCY **LEVELS As BENCHMARKS PROFICIENCY LEVEL Benchmarks Align** with Gifted & Talented Education COST PLA FUNCTIONAL BE OCESS 💆

- Boys advantage in MATH is more apparent among best-performing students.
- 10% highest-achieving boys score 15 points higher than the 10% highest girls.

PISA SCIENCE PROFICIENCY LEVELS

NOTE: Proficiency Levels Also Available for Each Content Area

PRO LEV	SCORE Range	TASK DESCRIPTIONS
1	261- 409	 1a. Everyday content knowledge for scientific explanation. Select best explanation. 1b. Identify simplepatterns in data, basic science terms, and follow explicit instructions.
2	410- 483	Draw on everyday contrent knowledge to identify scientific explanation. Identify a valid conclusion from simple data. Identify questions that can be investigated scientifically.
3	484- 558	□ Draw upon moderately complex content knowledge to construct explanations. Draw on elements of procedural knowledge for experiment. Distinguish scientific, non-scientific.
4	559- 632	Use more complex content knowledge to construct explanations. Conduct experiments with 2 or more independent variables. Justify experiment design, interpret data.
5	633- 707	 Use abstract scientific ideas to explain more complex phenomena. Apply more sophisticated epistemic knowledge to evaluate and justify, interpret, make predictions. Evaluate ways of exploring question scientifically and identify limitations in interpreting data sets including sources and the effects of uncertainty in scientific data.
6	708+	 Draw on range of interrelated scientific ideas and concepts from physical life and earth and space sciences. Use content, procedural and epistemic knowledge for hypotheses. Interpret data and evidence to discriminate between relevant and irrelevant. Distinguish between arguments based on scientific evidence. Evaluate competing experiment design.

PISA 2015 SCIENCE EUROPE PROFICIENCY LEVELS - GENDER

PROFICIENCY LEVELS 1 – 6 – MATH

7. SOCIOECONOMIC Factors

ESCS Index

- E Economic
- S Social
- **C** Cultural
- S Status

Socio-economically disadvantaged almost 3 TIMES MORE LIKELY than more advantaged NOT to attain Baseline Proficiency Level. HOWEVER

About 29% of disadvantaged are considered RESILIENT – They beat the odds and perform among the TOP QUARTER of students in all countries.

NOTE: Macao & Viet Nam disadvantaged Outperform advantaged in 20 Countries

PER CAPITA GDP - 2014

2014 GDP (Gross Domestic Product)

PISA 2015 – Science - EUROPE Adjusted Performance GDP

PISA 2015 – EUROPE – SCIENCE Socio-Economic Factors

Social Cultural Status 56

8. EARLY CHILDHOOD

- "Provide Access to
- Quality Early Education for All Children"
- Pre-Primary Score Better at Age 15
- Less Pre-School More Likely Disadvantaged
- Pass Legislation
- Free Pre-Primary Education Centers
- Ease Financial Burden for Disadvantaged
- Provides Parent Information and Guidance 58

ATTENDANCE - PRE-PRIMARY SCHOOL

ATTENDANCE - PRE-PRIMARY SCHOOL

9. OPPORTUNITY to LEARN

- Different Classes
- Grouping Within Classes
- Educational Materials
- Computers at School
- Student-Teacher Ratio
- School SES Profile
- Average Time Per Week
- After-School Study Time

unities

% EXTRACURRICULAR ACTIVITIES OFFERED AT SCHOOL

AFTER-SCHOOL STUDY TIME

SCIENCE - Student **Epistemic Beliefs** Average Levels Support in SCIENCE **Current/Future SCIENCE Engagement** Self-Efficacy Nurturing Future **SCIENTISTS**

MOTIVATION for Learning SCIENCE Enjoyment Interest Instrumental **Motivation Association of Engagement with Motivation**

PISA 2015 SCIENCE

CHAPTER 3 – Students' Attitudes Towards Science and Expectations of Science-Related Careers (Pisa Questionnaire)

FACTORS ASSOCIATED WITH SCIENCE PERFORMANCE

- Student Socio-Economic Profile
- Index of Adaptive Instruction
- Index Teacher-Directed Instruction
- Student Requirement of At Least One Science Course
- Disciplinary Climate Science Lessons
- Student Speaks Test Language at Home
- No Immigrant Background
- Visit Number of Students in Class
- Science-Specific Resources

10. ABILITY GROUPING

11. IMMIGRANT STUDENTS

Not PISA Test Language at Home 2015 - 12.5% Immigrant v/s 2006 - 9.4% **Generation 1 = 67% Generation 2 = 45%** Twice as Likely – Below Level 2 Science RESILIENT – 24% Socio-economically disadvantaged Score among top quarter of all students in PISA School with large immigrant population – not related to lower performance after accounting for SES. Generation 2 - Perform Better than Generation 1 Sharp Increase in Immigrants, Asylum-Seekers – Europe **Immigrants Differ: Country, Culture, Language, SES Criteria for admitting immigrants varies considerably. Growing Migration – Greater Linguistic Diversity** Immigrants can perform at VERY HIGH LEVELS.

11. IMMIGRANT Students

PISA	2015 VOLUMES	
VOLUME	TITLE	Q
	PISA 2015 RESULTS - EXCELLENCE AND EQUITY IN EDUCATION (2016)	489 Pages
	POLICIES AND PRACTICES FOR SUCCESSFUL SCHOOLS (2016)	467 Pages
	STUDENTS' WELL-BEING (2017)	525 Pages
IV	STUDENTS' FINANCIAL LITERACY (20	17) 265 Pages
V	COLLABORATIVE PROBLEM SOLVING	(2017) 305 Pages

FINANCIAL LITERACY INFO

12. FINANCIAL Literacy - Vol. IV

13. COLLABORATIVE PROBLEM SOLVING

44 Countries

8% OECD TOP Performers Aware of Group Dynamics **Team Member Roles Resolve Disagreements Positively Related Core** Math, Science, Reading **Positive Collaboration** With Physical Activity Video Games – Lower Internet, Media - Higher

GIRLS perform better than **BOYS** in every country. **Performance is positively** related to **SES** Profile **Girls value Relationships Boys value Teamwork Advantaged** Students value Relationships **Disadvantaged** Students value Teamwork **Schools** Foster **Positive Collaboration**

13. COLLABORATIVE PROBLEM-SOLVING

14. CHANGE OVER TIME "TRENDS"

- GENDER Gap in READING in favor of GIRLS narrowed by 12 points between 2009 and 2015.
- BOYS READING performance improved particularly among highestachieving BOYS.
- BOYS perform better than GIRLS in MATH among the highestachieving students.

PISA ASSESS- MENT	YEAR	MAJOR DOMAIN
IST	2000	READING
2 ND	2003	MATH
3 RD	2006	SCIENCE
4^{тн}	2009	READING
5 TH	2012	MATH
6 ^{тн}	2015	SCIENCE
7 TH	2018	READING

'5

TRENDS Over TIME – G7 & Others

	MATH 2000	MATH 2003	MATH 2006	MATH 2009	MATH 2012	MATH 2015
JAPAN G7	522	498	498	520	538	516
CANADA G7	534	528	527	524	523	527
U.S. G7	504	495	m	500	498	497
U.K. G7	m	m	495	494	499	498
IRELAND	527	515	517	496	523	521
GERMANY G7	484	491	495	497	508	509
FRANCE G7	505	496	488	496	505	499
ITALY G7	487	476	469	486	490	485
GREECE	474	472	460	483	477	467
TURKEY	m	441	447	464	475	428
ESTONIA	m	m	501	501	516	519
FINLAND	546	543	547	536	524	526
SLOVENIA	m	m	494	483	481	505

PISA 2015 MATH TRENDS

PISA 2015 – POLICY IMPLICATIONS

How universal are basic skills? Higher Public Expenditures not always delivered results. Countries do not have to choose between nurturing excellence & reducing underperformance. Gender Differences in Performance Persist.

POLICY IMPLICATIONS - SCIENCE

Support widespread engagement with science while meeting demand for scientific excellence.

Improve both skills and attitudes to encourage lifelong engagement with Science.

Challenge stereotypes about science- related occupations to help all boys and girls achieve their potential.

POLICY IMPLICATIONS - EQUITY

Design policies based on how well SES predicts performance and how much difference in student performance overlaps with SES disparities.

- Target special resources to schools with high concentration of low-performing and disadvantaged students. (Also IMMIGRANT)
- Encourage positive attitudes towards learning science among students of all backgrounds.
- Reduce differences in exposure to science content in school by adopting rigorous curriculum standards.

PISA Volume II – Policies and Practices for Successful Schools – POLICY IMPLICATIONS

- Account for Variations in Student Performance
- ✓ Give everyone Opportunity to Learn Science
- Ambitious Reforms = Changes Inside Classroom
- Positive Learning Environment For All
- Schools Use Multiple Types of Assessments
- Build Skilled and Dedicated Teacher Workforce
- Balance School Autonomy with Accountability
- Excellent Schools in Every Neighborhood
- Adjust School Size if Financial Resources Limited
- Additional Support to Struggling Not Repetition
- Delay Selection Age to Different Education Programs
- Provide Access to Quality Early Education
- Additional Support to Disadvantaged Schools

PISA Volume III– STUDENTS' WELL-BEING POLICY IMPLICATIONS Psychological Health, Motivation & Confidence at School Train teachers to address schoolwork anxiety. Share good practice to raise intrinsic motivation. Guide well-informed decisions future study, careers. Positive Peer and Teacher-Student Relationships Train teachers - classroom & relationship management. Prevent bullying; Support victims, bullies, bystanders. Positive Synergies Between School and Home Encourage & remove barriers to parental involvement Impact of SES inequalities on student perceptions. **Opportunities to Learn About Healthy Living Habits** Benefits active. healthy lifestyle thru P.E. & Health Ed. 82 Promote healthy, productive use of the **Internet**.

PISA - Contributions to Sustainable Development Goal 4

 Inclusive & equitable quality education.
 Lifelong learning opportunities for all.
 Differs from Millennium Development Goals (MDGs) 2000-2015

- Truly Global
- Establish universal agenda.
- Do not differentiate between rich and poor countries.
- Every single country is challenged to achieve SDGs.

Distinction "Top Performer" v/s "Gifted"

 International Communication
 & Terminology

* Facilitate Value High Achievement

Context of Less Elitist Label

POLICIES IN HIGH-PERFORMING COUNTRIES

Linda Darling-Hammond (Feb. 14, 2019 - AASA Supt. Conference)

- 1. Equitable RESOURCES to Schools.
- 2. Major Investments in EDUCATOR PREPARATION & Ongoing Support.
- 3. SCHOOL DESIGN Support s Teacher/Student Learning.
- 4. Equitable Access to RICH THINKING CURRICULUM.
- 5. Performance Assessments Focused on HIGHER ORDER SKILLS that are Used to Guide Learning.

HIGH-PERFORMING COUNTRIES SUCH AS FINLAND & SINGAPORE:

- "They take care of children. Health care is usually universal."
- Both countries have income security and high-quality preschool.
- Educating the "whole child" requires a safe school climate where children are not fearful of violence or of being bullied or ostracized for their differences.

TEN MEGA-TRENDS in GIFTED EDUCATION in and for 21st CENTURY: CHALLENGES and OPPORTUNITIES FOR ASA (Dai, 2016 P. 303-315)

TREND NO.	MEGA-TREND
1	Deep Pedagogical Changes
2	Structural Changes in the Social Organization of Learning
3	Change in the Technology of Advanced Learning
4	A More Prominent Role of University
5	Changes in Assessment of Learning and Achievement

TEN MEGA-TRENDS in GIFTED EDUCATION in and for 21st CENTURY: CHALLENGES and OPPORTUNITIES FOR

ASIA

(Dai, 2016 P. 303-315)

TREND NO.	MEGA-TREND
6	Changes in the Nature, Purpose & Means of Identification
7	Increasing Local Initiatives and "Reverse Innovations"
8	Shift from Educating a Handful of the Gifted to Developing Talent in All. Making the Pursuit of Excellence More Equitable
9	Preservation of a Good Form of "Elitism" through Gifted Education
10	Significant Change in Epistemology of Gifted Education

CONCLUSION

- PISA Extensive research Data as Evidence
- Multitude of Sub-group factors
- Achievement, Curriculum, Gender
- Valuable tool easy access for Policymakers.
- Diplomatically Compare & Advocate for
- "Top Performer" students in overall high achievement.
- Advocacy with Policymakers is Critical
- Support high achievement Gifted Education
- PISA = uncovered GOLD
- Positively contribute to a country's international educational profile in high achievement.

DIPLOMACY and Advocacy for Equity in Educational Opportunity For Gifted & Talented Students

One Person Can Make a Difference in Advocacy For Gifted & Talented Education.

kstonegift@aol.com

Entire WCGTC Presentation

Is Available on the INSTEAD International Web-site:

www.insteadinternational.com

- Personalized Country PISA Transnational Policy Plan & Analyses May be Ordered
- > PISA Data Access Assistance
- Charts, Graphs Generated
- Analyses in Presentation Level PowerPoint Format
- Report Comments & Optional Summaries

L Learning

- I Integrates
- **G** Genuine
- H Harmony
- Τ Το
- **B** Build
- **U** Understanding
- L Love &
- **B** Belonging

I.N.S.T.E.A.D. International

International Network Supporting Transnational Education And Diplomacy

Kathleen Stone, Ph.D. International Research & Diplomacy

INSTEAD INTERNATIONAL

Burr Ridge, IL 60527 U.S.A. Tel. 1-630-789-7665 Cell. 1-708-218-4623 E-mail: kstonegift@aol.com WEB-SITE: http://www.insteadinternational.com

Page 1

Abadzi, H., (2006). Efficient Learning for the Poor: Insights from the Frontier of Cognitive Neuroscience. Washington, D.C. The World Bank.

- Andrews, P. (2013). Finnish Mathematics Teaching from a Reform Perspective: A Video-Based Case-Study Analysis. Comparative Educational Review. Vol. 57, No. 2. P. 189-211.
- Baldi, S., Jin, Y., Skemer, M., Green, P.J., and Hereget, D. (2007). Highlights from PISA 2006: Performance of U.S. 15-Year-Old Students in Science and Mathematics Literacy and Mathematics Literacy in an International Context (NCES 2008-016). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC. http://nces.ed.gov.
- Carmichael, S., Wilson, W., Finn, C., Winkler, A., Palmieri, S. (2009). Stars By Which to Navigate? Scanning National and International Education Standards in 2009. An Interim Report on Common Core, NAEP, TIMSS and PISA. Thomas B. Fordham Institute. P. 1-59.
- Compton, R. (2011). *The Finland Phenomenon: Inside the World's Most Surprising School System.* New School Films. DVD (From Documentary Series on Global Education.

Crow, B., Lodha, S. K., (2011). The Atlas of Global Inequalities. Berkeley: University of California Press.

Dai, D. Y. (2016). Looking Back to the Future – Toward a New Era of Gifted Education. In D. Y. Dai & C. C. Kuo (Eds.). *Gifted Education in Asia – Problems and Prospects* (pp. 297-315). Charlotte, NC: Information Age Publishing, Inc.

Darling-Hammond, L. (2010). *The Flat World and Education- How America's Commitment to Equity Will Determine Our Future.* New York & London: Teacher's College, Columbia Univ.

- Dillon, S. (2010). *Top Test Scores From Shanghai Stun Educators*. New York: The New York Times. Dec. 7, 2010.
- Freeman, J. (2016). Cultural Variations in Ideas of Gifts and Talents with Special Regard to the Eastern and Western Worlds. In D. Y. Dai & C. C. Kuo (Eds.). *Gifted Education in Asia – Problems and Prospects* (pp. 232-3, 239). Charlotte, NC: Information Age Publishing, Inc.
- Koretz, D. (2009). "How Do American Students Measure UP: Making Sense of International Comparisons." Future of Children, V19 n1 Spring 2009. P. 37-51
- Loveless, T. (2007). Lessons Learned What International Assessments Tell Us About Math Achievement. Washington, D.C.: Brookings Institution Press.
- Martin, M., Mullis, I, Foy, P., Stanco, G., (2012). TIMSS 2011 International Results in Science. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
- Miller, D., Sen, A., Malley L., Burns, S., (2009). "Comparative Indicators of Education in the United States and Other G-8 Countries: 2009." National Center for Education Statistics, NCES 2009-039, P. 4-13.
- Mullis, I., Martin, M., Foy, P., Arora, A. (2012). TIMSS 2011 International Results in Mathematics. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.

- Mullis, I., Martin, M., Foy, P., Drucker, K. (2012). PIRLS 2011 International Results in Reading. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
- Mullis, I.V.S., Martin, M.O., Olson, J.F., Berger, D. R., Milne, D., and Stanco, G. M. (Eds.). (2008). *TIMSS 2007 Encyclopedia: A Guide to Mathematics & Science Education Around the World.* Chestnut Hill, MA: Boston College
- OECD (2016), PISA 2015 Results (Volume I): Excellence and Equity in Education, PISA OECD Publishing, Paris. https://dx.doi.org/10.1787/9789264266490-en
- OECD (2016), PISA 2015 Results (Volume II): Policies and Practices for Successful Schools, PISA, OECD Publishing, Paris. https://dx.doi.org/10.1787/9789264267510-en
- OECD (2016), PISA 2015 Results (Volume III): Students' Well Being, PISA, OECD Publishing, Paris. https://dx/doi/org/10.1787/9789264273856-en
- OECD (2016), PISA 2015 Results (Volume IV): Financial Literacy, PISA, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264270282-en
- OECD (2016), PISA 2015 Results (Volume V): Collaborative Problem Solving, PISA, OECD, Publishing, Paris. https://doi.org/10.1787/9789264285521-en
- Pereyra, M., Kotthoff, H., Cowen, R. (Ed.). *PISA Under Examination Changing Knowledge, Changing Tests, and Changing Schools*. Rotterdam/Boston/Taipei: Sense Publishers.

- Phillipson, S.N., Phillipson, S. (2016). Lessons in Gifted Education From Asia. In D. Y. Dai & C. C. Kuo (Eds.). Gifted Education in Asia – Problems and Prospects (pp. 226-227). Charlotte, NC: Information Age Publishing, Inc.
- Rutkowski, D (2017). Technical Limitation of PISA: Discussion for a Non-Psychometric Audience. Paper Presented March, 2017 at Comparative International Education Society, Atlanta, GA.
- Rutkkowski, L (2017). The Impact of Floor Effects in PISA for Low-Performing Countries. Paper Presented March, 2017 at Comparative International Education Society, Atlanta, GA.
- Sahlberg, P. (2010). Finnish Lessons What Can the World Learn From Educational Change in Finland? New York: Teachers College Press.
- Takayama, K. (2010). Politics of Externatlization in Reflexive Times: Reinventing Japanese Education Reform Discourses through "Finnish PISA Success." Comparative Education Review, v54, n1 Feb 2010. P. 51-75.
- Tucker, M., Ed. (2012). Surpassing Shanghai An Agenda for American Education Built on the World's Leading Systems. Cambridge, MA: Harvard Education Press.
- Zhao, Y. (2016). The Science and Education of the Individual Gifted Education for All. In D. Y. Dai & C. C. Kuo (Eds.). *Gifted Education in Asia Problems and Prospects* (pp. 246-249, 254). Charlotte, NC: Information Age Publishing, Inc.
- Tan, A. (2016). Embracing Education for All Creatively A Commentary on Gifted Education in East
 Asia. In D. Y. Dai & C. C. Kuo (Eds.). *Gifted Education in Asia Problems and Prospects* (pp. 258, 264-266). Charlotte, NC: Information Age Publishing, Inc.
- Vialle, W., Ziegler, A. (2016). Gifted Education in Modern Asia Analyses from A Systemic Perspective. In D. Y. Dai & C. C. Kuo (Eds.). *Gifted Education in Asia – Problems and Prospects* (p. 288). Charlotte, NC. Information Age Publishing, Inc.